低合金钢热处理工艺
本发明涉及低合金钢领域,具体是低合金钢热处理工艺。
背景技术:
低合金钢是指合金元素总量小于5%的合金钢。低合金钢是相对于碳钢而言的,是在碳钢的基础上,为了改善钢的性能,而有意向钢中加入一种或几种合金元素。加入的合金量超过碳钢正常生产方法所具有的一般含量时,称这种钢为合金钢。当合金总量低于5%时称为低合金钢,普通合金钢一般在3.5%以下,合金含量在5-10%之间称为中合金钢,大于10%的称为高合金钢。
目前,低合金钢的热处理方法,一般采用正火、淬火、回火三步骤工艺,但是制得的铸件产品的屈服强度、拉伸强度等力学性能不高,均匀延伸率和总延伸率较低,不能满足标准要求,采用此类热处理方法制成的低合金钢铸件产品在实际使用过程中容易发生断裂,大大缩减了使用寿命。
技术实现要素:
本发明的主要目的在于提供低合金钢热处理工艺,可以有效解决现有技术中低合金钢的热处理方法制得的铸件产品的屈服强度、拉伸强度等力学性能不高,均匀延伸率和总延伸率较低,影响实际使用的问题。
为实现上述目的及其他相关目的,本发明采取的技术方案为:低合金钢热处理工艺,包括以下步骤:
步骤一、轧制坯料:将低合金钢长坯加热到1250℃使之均匀化,经粗轧、精轧后形成钢板;
步骤二、热轧水冷:将步骤一得到的钢板直接水冷至室温;
步骤三、临界淬火:将步骤二得到的钢板在760℃进行淬火与保温,然后水冷至室温;
步骤四、临界回火:将步骤三得到的钢板重新分别加热至660℃和680℃进行回火与保温,然后空冷至室温,即完成两组钢料的热处理。
优选地,所述低合金钢的成分如下:c含量为0.08wt.%、si含量为0.5wt.%、mn含量为2.0wt.%、ni含量为0.5wt.%、cu含量为0.9wt.%、mo含量为0.3wt.%、cr含量为0.5wt.%、v含量为0.085wt.%、nb含量为0.03wt.%、ti含量为0.0175wt.%。
优选地,所述步骤一中的粗轧开始温度为1100℃,经过3道次的轧制形成中间坯料,粗轧终止温度为980℃。
优选地,所述步骤一中的精轧开始温度为900℃,经过3道次的轧制形成钢板,精轧终止温度为860℃。
优选地,所述步骤三中对钢板进行临界淬火后的保温时间为30min。
优选地,所述步骤四中对钢板进行临界回火后的保温时间为30min。
与现有技术相比,本发明具有如下有益效果:
(1)本发明中,低合金钢经过热轧水冷后,先是经过760℃的临界淬火保温处理,使得逆相变奥氏体含量增多,得到临界铁素体和马氏体的双相组织,马氏体体积含量较高,然后分别经过660℃和680℃临界回火处理后,残余奥氏体含量显著増加,此时临界铁素体和马氏体的边界变得模糊,在基体中弥散分布着细小的析出物,相对于传统的淬火回火工艺,能使低合金钢在保持强度水平的前提下明显提高塑韧性;
(2)本发明中,两组低合金钢经过热轧水冷、临界淬火及临界回火热处理工艺后,其屈服强度均达到了700mpa以上,均匀延伸率分别达到9.6%和11.2%,总延伸率分别达到23.8%和25.1%,-40℃夏比冲击功分别达到107和121j。与热轧态的钢板相比,均匀延伸率提高了约50%,-40℃夏比冲击功提高了约200%,综合力学性能相比传统热处理工艺显著提高,在保证了高强度的同时,还获得了高塑性和高韧性的优异力学性能,保证了低合金钢铸件产品的使用寿命。
附图说明
下面结合附图与具体实施例对本发明作进一步详细说明。
图1为本发明中经不同热处理阶段后的sem照片;
图2为本发明中经不同热处理阶段后的ebsd照片。
具体实施方式
为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施方式,进一步阐述本发明。
本发明提供低合金钢热处理工艺,包括以下步骤:
步骤一、轧制坯料:将低合金钢长坯加热到1250℃使之均匀化,经粗轧、精轧后形成钢板。
其中,低合金钢长坯的厚度为80㎜,粗轧开始温度为1100℃,经过3道次的轧制形成40㎜厚的中间坯料,粗轧终止温度为980℃;精轧开始温度为900℃,经过3道次的轧制形成16㎜厚的钢板,精轧终止温度为860℃。
步骤二、热轧水冷:将步骤一得到的钢板直接水冷至室温。
步骤三、临界淬火:将步骤二得到的钢板在760℃进行淬火与保温,然后30min水冷至室温;其中,对钢板进行临界淬火后的保温时间为30min。
步骤四、临界回火:将步骤三得到的钢板重新分别加热至660℃和680℃进行回火与保温,其中,对钢板进行临界回火后的保温时间为30min,然后空冷至室温,即完成两组钢料的热处理。
由于本实施例中的低合金钢ac1为688℃,经过步骤三中的临界热处理后,由于合金元素在第一步逆相变奥氏体中富集从而会导致步骤四热处理时所对应的ac1下降,所以本实施例中660℃和680℃热处理实际上也可能进入了两相区,因此步骤四被称之为临界回火。
本实施例中,低合金钢的成分如下:c含量为0.08wt.%、si含量为0.5wt.%、mn含量为2.0wt.%、ni含量为0.5wt.%、cu含量为0.9wt.%、mo含量为0.3wt.%、cr含量为0.5wt.%、v含量为0.085wt.%、nb含量为0.03wt.%、ti含量为0.0175wt.%。
将热处理后的钢板取样直径为10㎜的棒拉伸试样,室温下在万能拉伸试验机上按照gb/t228-2002进行拉伸力学性能测定,应变速率为1×10-3s-1,均匀延伸率用50㎜长的引伸计测定。
经过不同阶段处理后的拉伸和冲击性能汇总于下表:
由上表可知,热轧水冷后的钢板具有高的屈服强度(945mpa)和超高的抗拉强度(1201mpa),低的屈强比(0.79),但是塑性很低,均匀延伸率和总延伸率分别为3.1%和13.8%,且低温冲击韧性差,-40℃夏比冲击功仅为34j;钢板经过验钢经过760℃临界淬火后,屈服强度急剧下降了276mpa,仅为669mpa,拉伸强度仍为较高的994mpa,因此屈强比进一步降低,仅为0.67,其塑性略有提升但改善并不明显,均匀延伸率仅5%左右,总延伸率仅17%左右,-40℃低温冲击韧性仍然较低,夏比冲击功仅为43j;钢板760℃临界淬火后经过660℃和680℃临界回火后,屈服强度分别提高了78和60mpa,均达到了700mpa以上,抗拉强度均下降约200mpa,分别为805和795mpa,屈强比分别提升至0.93和0.92,但是,其塑性和低温冲击韧性显著提高,均匀延伸率分别达到9.6%和11.2%,总延伸率分别达到23.8%和25.1%,-40℃夏比冲击功分别达到107和121j。与热轧态的钢板相比,均匀延伸率提高了约50%,-40℃夏比冲击功提高了约200%。
采用sem对热轧水冷以及不同阶段热处理后的钢板进行表征,所得显微组织照片如图1所示,图1-a为实验钢经热轧水冷后得到的细小的板条组织,可看出板条组织包含板条马氏体和板条贝氏体组织,贝氏体含量较少,板条较马氏体粗大,且在板条内部可明显观察到细小的碳化物析出相;实验钢经过760℃临界等温并淬火后,图1-b中的显微组织为典型的临界铁素体和马氏体的双相组织,马氏体体积含量较高;实验钢经760℃临界淬火及660℃和680℃临界回火后的显微组织分别如图1-c和图1-d所示,可以看出,实验钢经过步骤四的临界回火处理后,显微组织为回火组织,此时临界铁素体和马氏体的边界变得模糊,在基体中弥散分布着细小的析出物。
由于残余奥氏体不能在sem显微组织中清晰地表征出来,进一步对试验钢经不同阶段热处理后残余奥氏体的形貌、大小和分布进行了ebsd表征,如图2所示。由图2-a可以看出,实验钢经过760℃临界淬火后,这种低bc(bandcontrast)值的马氏体组织含量较高,主要分布在原奥氏体晶界和板条之间,奥氏体晶界的马氏体组织呈粒状,板条之间的马氏体呈条状,深色的马氏体与亮色的铁素体相间分布,仅在马氏体与铁素体界面间可以观察到极少量的残余奥氏体相。这表明760℃临界淬火形成的逆相变奥氏体含量较多,合金含呈富集程度较低,大部分奥氏体在后续的水冷过程中转变成了马氏体组织,只有极少数界面上的奥氏体由于局部的c、mn等富集程度相对较高而稳定至室温,形成残余奥氏体。如图2-b所示,实验钢经660℃临界回火后,在原奥氏体晶界处可观察到少量的残余奥氏体组织,主要呈细小的颗粒状,随着临界回火温度的升高,经680℃临界回火后,实验钢中的残余奥氏体含量显著増加,残余奥氏体弥散分布在原奥氏体晶界和板条基体组织之间,分别呈细小的颗粒状和薄膜状,如图2-c所示。
综上,本发明中,低合金钢经过热轧水冷后,先是经过760℃的临界淬火保温处理,使得逆相变奥氏体含量增多,得到临界铁素体和马氏体的双相组织,马氏体体积含量较高,然后分别经过660℃和680℃临界回火处理后,残余奥氏体含量显著増加,此时临界铁素体和马氏体的边界变得模糊,在基体中弥散分布着细小的析出物,相对于传统的淬火回火工艺,能使低合金钢在保持强度水平的前提下明显提高塑韧性;同时,两组低合金钢经过热轧水冷、临界淬火及临界回火热处理工艺后,其屈服强度均达到了700mpa以上,均匀延伸率分别达到9.6%和11.2%,总延伸率分别达到23.8%和25.1%,-40℃夏比冲击功分别达到107和121j。与热轧态的钢板相比,均匀延伸率提高了约50%,-40℃夏比冲击功提高了约200%,综合力学性能相比传统热处理工艺显著提高,在保证了高强度的同时,还获得了高塑性和高韧性的优异力学性能,保证了低合金钢铸件产品的使用寿命。